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1. INTRODUCTION 

1.1 Purpose and scope: It is well known that 
the Ordinary Least Squares Estimator (OLSE) of 

the regression coefficient for the simple linear 
regression model 

Y a + + 

is biased and not consistent when both variables 
are subject to errors of measurement [9], A num- 
ber of studies in this area largely deal with 
simple models [e.g., 1, 3, 6, 8, 10]. In these 
studies each of the "true" values and the corre- 
sponding error terms are assumed to be uncorre- 
lated. Also, the two error terms are assumed to 
be uncorrelated. There were some exceptions how- 
ever. Chai [1] and Cochran [3] disucss some 
effects of correlation between the two error 

terms and between the "true" independent variable 
(X) and its errors of measurement. Although no 
empirical results have been published, some have 
mentioned possible cases where correlation between 

the "true" independent variable and its measure- 
ment errors may exist. 

The purpose of this paper is to examine, for 
a range of different values of and other rel- 
evant parameters, the bias of the Ordinary Least 
Squares Estimator of due to 

(1) Correlation between the errors of mea - 
surement of the "true" values (i.e., 

pde)' 

(2) Correlation between each of the errors 
of measurement and the respective "true" 
values (i.e., 

-Xe' pYd' (Ye). 

Further, the paper shows the effect of the 
bias of the OLSE of ß on the confidence interval 
estimation for ß and the hypothesis testing for 

0=0 v.s. 340. 

1.2 The rationale for this study: In econ- 
ometric research it quite often happens that 
there would be certain relationships between 
errors of measurement and the "true" variables 
and between measurement errors themselves. For 
example, in measuring the values of housing, the 
error of measuring expensive units may be posi- 
tively correlated with the "true" values of the 
units, because there exists a tendency to under- 
value housing in ghetto areas and overestimate 
property value in suburban areas. Another case 
may be measurement of family income. The error 
of measurement might be negatively correlated 
with the "true" family income, because of the 
tendency of under- reporting of higher income and 
of over -reporting lower income. 

Still another group of examples could be 
found in time series data. If the independent 
variable is a function of time, and if the errors 
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of measurement for the "true" value for the earli- 
er period are greater (because of lack of memory, 
for example) than the ones for the recent measure- 
ment, then one would expect a correlation not only 
between the "true" value and the error of measure- 
ment, but also a correlation between errors over 
successive time periods. 

In the case of a stock market index it may 
happen that the majority of the securities in the 
index over -react to the general trend of the mar- 
ket. They go up more on an "up- market" and go 
down more on a "down- market" than the average 
movement of the universe of all securities. 

All these socio- economic interrelationships 
between the "true" values of the two variables 
and between their respective errors of measurement 
warrant a careful examination of the effects of 
various errors of measurement on the OLSE of ß. 

In section 2 the mathematical model, the bias, and 
the bias relative to the true are presented. A 
discussion on the effect of the bias on the OLSE 
is presented in Section 3. 

2. THE MODEL 

2.1 Bias: Let Y and X respectively be the 
"true" values for a population element and let 
the relationship between Y and X be given by a 
linear regression model 

Y=a+ßX+e (1) 

where is a random residual of the regression. 
We assume that both X and Y are subject to errors 
of measurement and let the values actually obser 
observed be: 

x X + d 

y Y + e 

(2) 

(3) 

where d and e represent measurement errors. Sub- 
stituting (2) and (3) into (1) results in 

y =a +ßx +u (4) 

where u=- ßd +e +e (5) 

we assume that X, Y, d, and e jointly follow a 
multi -variate normal process with mean vector 

and variance -covariance matrix 

2 
a 

2 

aXd 

aXd 

aYD 

2 

aYe 
ade 

aYe 

ode 

2 
a 
e 



Hence, the regression given by (4) above is lin- 
ear according to Lindley [11]. 

Without loss of generality we assume that all 
means are put equal to zero (a =0) for the purpose 
of deriving the bias of the OLSE. Let the OLSE 
of be denoted by b. Then b = Exy /Ex2 and for 

the regression of y on x, E(b) E {xE(yIx) /Ex2 

Furthermore, the regression of y on x is linear 
so if we write E(ylx) = Xx we have E(b) X. X 

is found, therefore by evaluating E(ylx)/x. But 
first, evaluate E(ylx). 

E(ylx) ßx + E(ulx) = ßx + E(elx) - ßE(dlx) 

+ E(elx). Since axe = 0 and = 0, we have 

E(ylx) ßx + E(elx) - E(dlx). (6) 

We now evaluate the last two terms of the right - 
hand side of equation (6) each divided by x as 
follows: 

2 

E(dlx) E(dx) E {d(X +d)} + ad 

E(x2) E(X+d)2 a + 2aXd + 

E(elx) E(ex) E {e(X +d)} 0Xe + ade 

E(x2) E(X+d)2 + 2aXd + 

Thus, by substitution 
+ ade - + 

+ 2aXd + 

The bias is therefore the second term on the 
right -hand side of (7). Let the bias be denoted 
by Bb. Rewriting it in terms of correlation 
coefficients 

pXd' pXe' 
and pde' we obtain 

+ pdeodoe - ß(pXdaXad 
Bb 

2 2 
(8) 

+ 
2PXd0X0d + 

We define the relative biases as follows: 

(1) Bias relative to ß: Bb /ß 

(2) Bias relative to ab. Bb/ab 

where ab is the standard error of b, i.e., 

ab = au/ E(x -x)2 

and from (4) and (5) 

= E(y - a + $x)2 = + e - ßd)2 

= o + + ad ßade 

(9) 

(10) 

2.2 Effect of bias on confidence interval 
for ß: Assuming that we have a multivariate 
normal distribution of X, Y, d, and e, the OLSE 
of 8, b is normal. Let and respectively be 
defined as follows: 

bL ab 

+ 
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where 

z = {b-E(b)} 

Now let ZL and respectively be the standard- 
ized values of and bU. Then 

ZL = - Izl - Bb /ab 

zu = IzI - Bb /0b 

The z indicates the desired level of confidence 
and ZL and ZU indicate the actual level of confi- 
dence realized. 

2.3 Effect of bias on testing of hypotheses 
0=0 v.s. 00: In testing of the null hypothesis 
H0:ß =0 against the alternative H1:00 with Type I 

error controlled, the critical values (action 
limits) in terms of standardized values, Al and 
A2 actually realized are 

Al = 0 - Izl - Bb /ab 

A2 = 0 + - 

3. DISCUSSION 

First we consider bias relative to ß. The 
relative biases for different parameters are 
shown by three figures attached. Each figure con- 
tains three graphs -- the one on the left is for 

pxy = .1, the center one is for = .5, and the 
one on the right is for .9. Each graph 
shows the relative biases for pde + .1, .5, and 

.9 and for various values of the error variances 

a2 
d 
/a2 and a2 /a2. Figure 1 is for pXd = 0 and 

pXe = 
Figure 2 is for pXd = 0.9 and pXe = 0.9, 

and Figure 3 is for pXd = -0.5 and pXe = -0.5. 

The main points of these graphs are: (1) for 

given PXd, PXe, and pde, the greater the Psy, the 
smaller the relative bias for the ranges of the 
error variances considered. But the magnitude of 
the relative bias is substantial even when =0.9 
PXd 0, and P = 0 (see Figure 1). As pXd and 

pXe 
increase, Me relative biases increase -- with 

much more variation over different Pde's for low 
than for high Psy. For PXd <0 and PXe <0, the 

relative bias varies more over different 
for given pxy than the relative bias does for 
PXd >0 and PXe (2) For given PXd and PXe the 
relative bias varies more for low values of 

/aX and than for higher values of the same 

parameters; conversely, the relative bias varies 
more for high values of Pde and than for 

e Y 
lower values of 

de 
and /a. When PXd <0 and 

<0 the relative bias is highly sensitive to 
change in a2 /a2 a2, 2 and pde (see Figure 3). 

d X e Y 



Next we consider the effect of the bias on 
interval estimation of and on hypothesis test- 
ing, It is well known that if an estimator is 
biased the probability of including the parameter 
in the confidence interval is reduced and that 
the amount of loss in probability in general is 
quite serious as the bias relative to the stand- 
ard error of the estimator is greater than 0.2. 
Table 1 presents the actual probability realized 
for a 95 per cent confidence interval for O. The 
data presented in this table are for P .55 

only. According to the table, the probability 
decreases as IPXdI increases for a given sample 
size (n) and for a given ode, except for Pde = 0 
and -.56<PXd.5-.86. The probability also 
decreases rather rapidly as n increases (except 
for ode = 0 and = -.86). This is expected 
since o2 gets smaller as E(x -x)2 decreases when 

n increases, whereas the bias Bb is independent 
of n. 

In the case of hypothesis testing, the same 
consequence is realized as in the case of inter- 
val estimation. This time, however, the probabil- 
ity of accepting the null hypothesis when it is 
indeed true. 

In short, what we have shown and reemphasized 
(on the basis of the model which is more general 
and perhaps more realistic) is the danger of 
using the OLSE of when both variables are sub- 
ject to errors of measurement. As many statis- 
ticians are aware, there has been some progress, 
however limited, in finding ways of improving 
estimation methods and a way of actually assess- 
ing the various error parameters, but there is 
much need for more research in this area. 
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TABLE 1 ACTUAL CONFIDENCE LEVEL 

REALIZED FOR 95 PER CENT CONFIDENCE 

(For p = .55) 

Pde PXd 10 
Sample 

25 

Size 
50 100 

.43 .86 .7985 .4840 .2709 .0505 

.56 .8555 .6406 .3707 .1075 

.9305 .8835 .7612 .6141 

-.56 .9333 .8817 .8300 .6985 
-.86 .4920 .0250 0 0 

0 .86 .7157 .2946 .0401 0 

.56 .7580 .3783 .0401 .0000 

0 .8395 .5987 .2062 .0708 

-.56 .9219 .8300 .6772 .4840 

-.86 .9498 .9477 .9449 .9441 

-.43 .86 .5714 .1492 .0150 0 

.56 .6217 .1922 .0078 0 

o .6844 .3372 .0559 .0018 

-.56 .7454 .2451 .0582 .0021 

-.86 .7190 .1635 .0154 0 
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Figure 1 The relative bias of the OLSE for 0, and for selectea values 
of 

*Remark: Solid lines in Figures represent the relative bias for positive and the 
broken lines show the relative bias for negative p .. The numbers on the delines 
indicate the magnitudes of pde. For example, 9 meIhs pde .9 if is on ,a solid 
line, it means pde -.9 if on a broken line. The numbers at the end of curves 
indicate 
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